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ABSTRACT
Ultrasound can be used to manipulate protein function and activity, as well as for targeted drug delivery, making it a powerful diagnostic
and therapeutic modality with wide applications in sonochemistry, nanotechnology, and engineering. However, a general particle-based
approach to ultrasound modeling remains challenging due to the significant disparity between characteristic time scales governing ultrasound
propagation. In this study, we use open-boundary molecular dynamics to simulate ultrasound waves in liquid water under ambient conditions
by employing supramolecular water models, i.e., the Martini 3, dissipative particle dynamics, and many-body dissipative particle dynamics
models. We demonstrate that our approach successfully reproduces the solution of the traveling wave equation and captures the velocity
dispersion characteristic of high-frequency ultrasound waves.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0238348

I. INTRODUCTION

Ultrasound is a powerful and versatile tool in scientific
research. Owing to its non-invasiveness, it has revolutionized
medicine and materials science in the past century.1 By leveraging
acoustic waves with frequencies above 20 kHz, it enables precise
control and visualization of particles and tissues. Moreover, ultra-
sound irradiation can increase the permeability of biological mem-
branes,2 disrupt amyloid fibrils,3 and modulate protein activity.4
Several groups have reported simulations of biomolecules subjected
to shock waves or ultrasonic pressure fields of various frequencies
and amplitudes.5–12

To accurately model ultrasound propagation in fluids, both
compressibility and viscosity should be considered.13,14 Compress-
ibility, measuring a fluid’s resistance to sustain volume changes
under pressure, is crucial in determining the thermodynamic speed
of sound c, as implied by c = (βSρ0)

−1/2. Here, βS is the adiabatic
compressibility and ρ0 is the equilibrium mass density. However,
acoustic energy is dissipated in real fluids and sound waves are atten-
uated. The main source of attenuation can be attributed to viscous
effects,15 which ultimately determine the penetration depth of sound

waves. In addition, the penetration depth is influenced by the fre-
quency of the propagated sound wave and is known to decrease
with increasing frequency. To illustrate, in water, MHz acoustic
waves can penetrate several centimeters deep, while THz waves are
absorbed on the nanometer scale.1,13,14

Sound waves are commonly simulated using continuum mesh-
based methods, e.g., the boundary element method16 and the finite
element method.17 It has been shown that hydrodynamics holds at
surprisingly small scales,18 which makes it possible to use the con-
tinuum theory even at the mesoscale. However, at these small scales,
molecular discreteness becomes significant, as particles experience
thermal motion that is negligible for macroscopic bodies, such as
airplanes and submarines. To address this, fluctuating terms must
be incorporated into hydrodynamic field theories, as pioneered by
Landau and Lifshitz (LL).19

Alternatively, coarse-grained (CG) particle-based methods,
such as the smoothed particle hydrodynamics (SPH)20 and dissipa-
tive particle dynamics (DPD),21–23 have shown significant potential
for acoustic wave simulations.5,24,25 In these approaches, the CG
particles represent chunks of fluid that traverse the domain. This
conceptually straightforward framework enables the exploration of
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time and length scales that are typically inaccessible with conven-
tional microscopic simulations. To overcome the limitations asso-
ciated with the separation of characteristic scales governing ultra-
sound propagation, hybrid continuum-particle methods have been
proposed.26–31 An example is the molecular dynamics/fluctuating
hydrodynamics (MD/LL-FH),26 where a standing ultrasound wave
is imposed by modifying the governing LL-FH equations for the
cells at the beginning of the simulation domain, while the periodic
boundaries of the system remain unchanged.

Studying the propagation and attenuation of sound waves
requires careful implementation of boundary conditions. For
instance, Asano et al.32,33 used a sinusoidally oscillating wall to
generate sound waves and applied a locally implemented Langevin
thermostat near the opposing wall to dampen them. However, con-
fined liquids are inherently affected by finite-size effects, which
can significantly influence its behavior.34,35 Similarly, Delgado-
Buscalioni et al.36 used a hybrid continuum-molecular dynam-
ics (triple-scale) scheme and rigid walls in the outer continuum
region to induce shear flow. In the triple-scale scheme, the bound-
ary conditions are transmitted to the molecular dynamics (MD)
domain via a flux exchange scheme, rendering the MD region an
open system that exchanges mass, energy, and momentum with its
surroundings.

Recently, it has been shown that the open-boundary molecular
dynamics (OBMD) method,37 which is used to simulate the par-
ticle domain of the triple-scale scheme mentioned above, enables
one to simulate ultrasound waves in an open system using parti-
cles without changing Newton’s equations of motion in the bulk.24

OBMD is a combination of two (multiscale) MD methods, i.e., the
adaptive resolution scheme (AdResS)38,39 and open MD,40,41 utiliz-
ing additional external forces to impose boundary conditions on the
system. Sound waves are introduced as a time-dependent sinusoidal
pressure perturbation.28 Building on the work of Papež and Praprot-
nik,24 where OBMD was used to study the propagation of ultrasound
through liquid water described by the mesoscopic DPD21,22 model,
we employ the latter alongside additional supramolecular water
models, i.e., the Martini 342 and the many-body DPD (MDPD)43,44

models, in a new implementation of OBMD within Mirheo, a
high throughput DPD simulation package.45 This serves as a ver-
ification of the OBMD implementation in Mirheo. It allows us to
study how the properties of selected water models and thermostat
parameters influence their macroscopic properties, e.g., the shear
viscosity, speed of sound, and attenuation coefficient. Finally, we
explore how ultrasound attenuation and speed of sound vary with
frequency.

II. THEORETICAL BACKGROUND AND METHODS
A. Attenuation and dispersion

Attenuation of sound waves has multiple sources that can
be roughly divided into those related to fluids’ intrinsic proper-
ties and those related to the boundaries of a medium.14 Focusing
on the former, the main contributions to sound absorption are
due to the viscous effects that occur when expansion and com-
pression accompany sound propagation, the transfer of thermal
energy from high-temperature condensations to lower ones, and
the structural relaxation associated with the volume changes during
acoustic compression and its reversal.13,14,46 Sound absorption can

be phenomenologically attributed to a time lag between the pressure
fluctuations in a sound wave and the associated density variation.15

In general, at low frequencies, the relaxation effects are negligible
because of the slow-varying pressure changes in the wave. Under
these conditions, sound propagates with the low-frequency limit of
the speed of sound, denoted by c. In contrast, at higher frequen-
cies, the pressure changes too rapidly and the fluid cannot reach
its relaxed state during oscillations. At such high frequencies, the
propagation speed of the disturbance, denoted by vp, varies with
frequency.

To describe acoustic waves in viscous fluid, we first consider the
Navier–Stokes equation,

ρm[
∂v
∂t
+ (v ⋅ ∇)v] = −∇p + (

4
3

η + ηB)∇(∇ ⋅ v) − η∇×∇ × v,

(1)
where ρm is the mass density, v is the velocity, p is the pressure, and
η and ηB are the shear and bulk viscosity, respectively.13,19 The last
term of Eq. (1) represents the dissipation of acoustic energy related
to turbulence and vorticity, which are in linear acoustics usually
confined to small regions near boundaries and are of lesser impor-
tance.13 When omitting the last term and linearizing the left side of
Eq. (1), the use of the linearized equation of continuity,

∇ ⋅ v = −
∂s
∂t

, (2)

and the adiabat p = ρ0c2s, where s = (ρm − ρ0)/ρ0 stands for conden-
sation, give the lossy wave equation,

(1 + τs
∂

∂t
)∇

2p =
1
c2

∂2p
∂t2 . (3)

Here,

τs = (
4
3

η + ηB)/ρ0c2 (4)

is the viscous relaxation time. For larger density amplitudes, nonlin-
ear effects from the pressure equation of state introduce a term ∼p∂p

∂t
in the lossy wave equation Eq. (3), resulting in the Burgers’ equation
for the pressure amplitude.47 For a monochromatic wave exp(iωt),
where ω = 2πν is the angular frequency, we obtain the Helmholtz
equation,

∇
2p + k2

c p = 0, (5)

where

kc = k − iα = (ω/c)/
√

1 + iωτs (6)

is the complex wavenumber. The phase velocity vp and the
attenuation coefficient α are expressed as

vp =
ω
k
= c
√

2

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 + (ωτs)
2

√

1 + (ωτs)
2
+ 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

1/2

, (7)

α =
ω
c

1
√

2

⎡
⎢
⎢
⎢
⎢
⎢
⎣

√

1 + (ωτs)
2
− 1

1 + (ωτs)
2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

1/2

. (8)
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For a plane wave traveling in the positive x direction, the solution to
Eq. (5) is

p = p0ei(ωt−kcx)
= p0e−αxei(ωt−kx). (9)

As the relaxation time of viscous absorption, Eq. (4), is com-
parable with the time between successive collisions of a particle
in a liquid, the wavelength of a sound wave at a frequency close
to the relaxation frequency is similar to the mean free path of
the molecules. In this regime, molecular effects become significant,
violating the continuum assumption underlying the Navier–Stokes
equations. For this reason, the theory is only valid in the limit of
small frequencies, i.e., when ωτs ≪ 1.13 In this limit, Eqs. (7) and (8)
yield the following simpler forms:

α ≈
ω2

2ρ0c3 (
4
3

η + ηB) (10)

and

vp ≈ c[1 +
3
8
(ωτs)

2
]. (11)

The presented theory predicts a quadratic dependence of the atten-
uation coefficient on frequency. Furthermore, it explains that the
dispersion of sound propagation is O(ωτs)

2, which is small at low
frequencies, but significant in the high-frequency regime.13

B. (Many-body) dissipative particle dynamics
To extract the details of the interaction of sound waves with

water, we first resort to the mesoscopic DPD model, which is often
used to simulate complex systems, such as blood,48 polymers,49

colloids,50 and droplet dynamics.51 In addition, it conserves the
overall linear momentum and recovers the Navier–Stokes equations
in the continuum limit,22 which is crucial for our applications. The
equations of motion for a DPD particle of mass mi are

mi
dvi

dt
=∑

j≠i
(FC

ij + FR
ij + FD

ij ),
dri

dt
= vi, (12)

where FC
ij , FR

ij , and FD
ij are the conservative, random, and dissipative

forces acting between particle i and j, respectively, and are defined as

FC
ij = aw(rij)êij, (13)

FR
ij = σwR(rij)Θijêij, (14)

FD
ij = −γwD(rij)(vij ⋅ êij)êij. (15)

In DPD, the conservative force is a linear repulsive force of strength
a, the random force accounts for the thermal fluctuations of the par-
ticles, while the dissipative force represents viscous damping and
depends on the relative velocity of the particle pair. Here, vij = vi − vj
and rij = ri − rj are the relative velocity and displacement of the par-
ticles, respectively, êij = rij/rij, and rij = ∣rij∣. Furthermore, σ and γ
are the controlling parameters of the random and dissipative forces,
respectively, and Θij is a Gaussian white noise variable, symmetric in

particle indices (Θij = Θji) with zero mean and unit variance. w(r),
wR(r), and wD(r) are the conservative, random, and dissipative
weight functions, respectively. Together, the random and dissipative
forces act as a thermostat, maintaining the system’s temperature T,
which is set by the fluctuation–dissipation theorem given by

σ2
= 2γkBT, (16)

where kB is the Boltzmann constant. The weight functions are
defined as

wD(r) = [wR(r)]2 = [w(r)]2s, (17)

where the exponent s is usually chosen in the region 0 ≤ s ≤ 1, with
higher values of s reducing the friction between particles, and

w(r) =
⎧⎪⎪
⎨
⎪⎪⎩

1 − r/rc, r < rc,

0, r ≥ rc.

Here, rc is the cutoff radius.
Complex fluid behavior, such as phase separation and surface

tension effects, are challenging to model with the standard DPD. On
the other hand, these properties can be captured by using the MDPD
model,43,44 which is an extension of the DPD model that introduces
a density-dependent repulsive term in the conservative force. The
latter is defined as

FC
ij = aw(rij)êij + b(ρ̄i + ρ̄j)wd(rij)êij, (18)

where a and b are the interaction parameters, wd(r) is a weight
function with a cutoff rd < rc,

wd(r) =
⎧⎪⎪
⎨
⎪⎪⎩

1 − r/rd r < rd,

0, r ≥ rd,

and ρ̄i is the local density of particle i, calculated as

ρ̄i =∑
i≠j

15
2πr3

d
w2

d(rij). (19)

The equation of state (EOS) of MDPD for rc = 1 is52

p = ρkBT + aα̃ρ2
+ 2α̃br4

d(ρ
3
− c̃ρ2

+ dρ) −
α̃br4

d

∣a∣1/2
ρ2, (20)

where α̃ = 0.101, c̃ = 4.69, and d = 7.55. If b = 0, MDPD reduces to
standard DPD.

C. Open-boundary molecular dynamics (OBMD)
To simulate complex non-equilibrium conditions, we employ

OBMD. In OBMD, the simulation box is divided into three regions,
i.e., two buffer regions on the sides of the simulation box enclos-
ing the central region of interest (ROI). The governing equations
of motion, e.g., Eqs. (12)–(15) for DPD, remain unchanged in the
ROI. The box is opened in one spatial direction, usually along the
x axis, while in the remaining two (y and z directions), periodic
boundaries are applied, as shown in Fig. 1. The buffers act as reser-
voirs for particles that are free to diffuse between the regions and
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FIG. 1. Schematic of the OBMD scheme, where the simulation box is open along
the x axis, and the ROI is enclosed by two buffers.

are deleted from the system when they diffuse across the outer bor-
der of the simulation box. To keep the number of particles in the
buffers approximately constant, a simple feedback loop is utilized.
The algorithm keeps track of ΔN = Δt/τB(N0 −N), where Δt is the
time step, τB is the buffer relaxation time, N0 is the desired num-
ber of particles in the buffer, and N is their current number in the
buffer. If ΔN > 0, new particles are inserted into the buffer using the
USHER53 algorithm. The latter performs energy minimization until
either an energetically acceptable position for the particle insertion is
found or the maximum number of iterations is reached. When sim-
ulating complex molecules, e.g., star polymers,54 AdResS is used to
facilitate their insertion.

In addition, the buffers are utilized for the imposition of the
boundary conditions, which are applied with external forces fi that
act only on the particles in the buffers. The forces are determined by
the momentum balance at the open boundary, using37,40

JA ⋅ n̂ =∑
i ∈B

fi +∑
i′

Δ(mi′vi′)

Δt
, (21)

where J is the momentum flux tensor, A is the area of the inter-
face between buffer and ROI, and n̂ is the unit normal vector of
the boundary surface, pointing toward the center of the simula-
tion box. The index i runs over all particles in the buffer, while
i′ runs over all particles inserted or deleted in the last time step.
The momentum change for an inserted particle is Δ(mi′vi′) = mi′vi′

and for a deleted particle, Δ(mi′vi′) = −mi′vi′ . Considering equilib-
rium boundary conditions of a constant normal load, the boundary
condition reads as follows:

JA ⋅ n̂ = pxxAn̂, (22)

where pxx is the equilibrium pressure. Adding a term that applies
equally opposite forces to the left and right buffer, expressed as

JA ⋅ n̂ = pxxAn̂ + pxyA t̂, (23)

induces shear flow. Here, pxy is the shear stress, and t̂ is a unit vec-
tor, i.e., t̂ = êy at the right buffer and t̂ = −êy at the left buffer. By
introducing a sinusoidal disturbance on the left buffer with

JA ⋅ n̂ = pxxAn̂ + Δp sin (2πνt)An̂, (24)

an acoustic wave is generated, where Δp is the amplitude of the
imposed pressure wave. The sinusoidal force is applied at each time
step and the wave is left to propagate through the simulation box.

III. COMPUTATIONAL DETAILS
All simulations of liquid water under ambient conditions

are performed using Mirheo,45 an open-source, high-performance,
GPU-accelerated code designed for simulating flows at milli- and
micro-scales. Mirheo has been extended to support simulations
using the OBMD method. For equilibrium and shear flow simula-
tions, we use a simulation box (Lx, Ly, Lz) of dimensions Lx = 30 nm
and Ly = Lz = 10 nm. To minimize spurious reflections of unattenu-
ated waves at the ROI-buffer boundary, the simulation box should be
sufficiently long in the propagation direction when simulating ultra-
sound waves so that the wave amplitude is relatively low at the edge.
When exploring attenuation and phase velocity frequency depen-
dence, we choose simulation boxes with ROI lengths equivalent
to about six wavelengths. In addition, the introduction of non-
reflective boundaries that absorb the incoming wave could further
help reduce these reflections.55 The buffer size is always LB = 0.15Lx.
The equations of motion are integrated using a modified velocity-
Verlet algorithm with λ = 1/2,21 where the time step for equilibrium
and shear flow simulations is Δt = 0.01 ps for DPD and MDPD, and
Δt = 0.02 ps for all simulations using the Martini 3 water model.
In DPD and MDPD ultrasound simulations, one wave period is
covered in 300 time steps. Equilibrium and shear flow simulations
are conducted for 20 ns, with the first 1 ns used for equilibration
and the rest 19 ns used for the production run. Ultrasound simula-
tions are performed for 150 periods, where the last 100 are used for
analysis. The normal load (pxx) for DPD model simulations is deter-
mined from canonical ensemble simulations, while for the MDPD
and Martini 3 model, we use pxx = 1 bar.

The conversion between the simulation and physical scales is
set through elementary units, the mass unit UM , the length unit UL,
and the time unit UT . They are determined using

UM = m0Nm, (25)

UL = (ρV0Nm)
1/3, (26)

UT =

¿
Á
ÁÀUMU2

L

UE
, (27)

where Nm is the mapping number, the number of water molecules
represented by one computational particle, m0 and V0 are the mass
and volume of one water molecule, respectively, ρ is the number
density in simulation units, and UE is the energy scale. For DPD
and MDPD simulations, UE = kBT, while for simulations using the
Martini 3 model, the energy scale is set to UE = 4.65 kJ mol−1.

A. Dissipative particle dynamics
This study examines two DPD mappings, i.e., Nm = 4 and

Nm = 8.56 The particle number density in both mappings is set to
ρ = 3 U−3

L . This is a reasonable choice, as the quadratic EOS only
holds for sufficiently high densities (ρ > 2 U−3

L ).21 The repulsive
parameter a is determined based on the formulation by Groot
et al.21,57 as

a =
Nmκ−1

exp − 1
2α̃ρ

(28)
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TABLE I. DPD parameters for 4-to-1 and 8-to-1 mappings.

Parameter Nm a ρ rc T UL UM UT

Unit / UMUL/U2
T U−3

L UL K nm 10−25 kg ps

4 103.96 3.0 1.0 300 0.711 1.196 3.83
8 209.6 3.0 1.0 300 0.893 2.39 6.83

(in units of UE/UL), where κ−1
exp ≈ 16 is the experimental dimension-

less compressibility of water at 300 K.21 For both mappings, we use
the DPD thermostat with γ = 4.5UM/UT and s = 1.0. The parameters
and elementary units for DPD models are presented in Table I.

B. Many-body dissipative particle dynamics
Next, we utilize the MDPD water model. For Nm = 3, we

use the parameters presented by Ghoufi and Malfreyt,58 while the
parameters for Nm = 4 and Nm = 8 are determined following the
modified parameterization by Vanya et al.,59,60 which reproduces the
density, the surface tension and the compressibility of the fluid. Sim-
ilar to the DPD model, the DPD thermostat with γ = 4.5UM/UT and
s = 1.0 is employed. The parameters used are presented in Table II.

C. Martini 3 water model
Finally, we employ the Martini 3 water model, which represents

four heavy atoms with a single interaction site.42,61 The cutoff of the
Lennard-Jones (LJ) pair potential is set to rLJ

c = 1.1 nm and the DPD
thermostat with γ = 1.0 Da ps−1, s = 1.0, and cutoff rDPD

c = 1.2 nm
is applied. The parameters and unit conversions for simulations of
Martini 3 model are presented in Table III.

D. Analysis
To determine the equilibrium pressure for the DPD model, we

perform canonical ensemble simulations and compute the pressure
with the virial theorem,

p = ρkBT +
1

3V∑i<j
⟨Fij ⋅ rij⟩. (29)

Here, V is the volume, and the angular brackets denote ensemble
averages. By varying the density of the systems and calculating the
pressure using the virial theorem, we determine the EOS. The lat-
ter is also constructed using OBMD by varying the normal load
imposed on the buffers and evaluating the density to which the open
system relaxes. An example of the OBMD equilibrium mass density

TABLE III. Martini 3 parameters.

Parameter Nm rLJ
c ϵ σ rDPD

c γ UL UM UT UE

Unit / nm UE UL nm Da/ps nm 10−25 kg ps kJ/mol

4 1.1 1.0 1.0 1.2 4.5 0.47 1.196 1.85 4.65

profile is in the supplementary material, Fig. S1. The speed of sound
is determined using

c =
√

∂p
∂ρm

(30)

at ρm = 103 kg/m3.
When applying equally opposite forces according to Eq. (23), a

linear velocity profile through the ROI is established. By fitting a lin-
ear function to the computed data, the shear rate is calculated using
γ̇ = ∂vy/∂x. Ultimately, the shear viscosity η is derived from shear
rates at different shear stresses as

η = pxy/γ̇. (31)

To analyze ultrasound simulations,24 the ROI is divided into
Nx = 50 equal bins along the x axis. The density variation through
the ROI is computed every ten time steps, followed by averaging the
density over multiple cycles for the same snapshot within a cycle.
By fitting a sinusoidal function ρi(t) = ρ0 + Δρi sin(ωt + φ), describ-
ing the density variation in the ith bin, where φ is the phase, we
get the sound wave amplitude Δρi for each bin. Next, the attenua-
tion coefficient is determined by fitting an exponentially decaying
function Δρ(x) = Δρ0 exp(−αx) to the computed data. To deter-
mine the speed of sound, we examine the density variation across
ROI in a particular snapshot of a cycle tj. In our simulations, we
remain within the linear acoustic regime and consider the solution to
Eq. (3). For larger density amplitudes, the Burgers’ equation should
be applied to describe the acoustic wave.32,33,47 The speed of sound
is obtained from the wavenumber k as vp = ω/k, where k is deter-
mined by fitting a damped traveling wave function to the calculated
data using

ρj(x) = ρ0 + Δρ0 sin (ωtj − kx + φ) exp (−αx). (32)

The bulk viscosity was calculated from simulations of
the canonical ensemble. We use the generalized Green–Kubo
equations,62–64

ηB =
V

kBT∫
∞

0
dt⟨IC

(0)IC
(t) + ID

(0)ID
(t)⟩, (33)

TABLE II. MDPD parameters for 3-to-1, 4-to-1, and 8-to-1 mappings.

Parameter Nm a b ρ rc rd T UL UM UT

Unit / UMUL/U2
T UMUL/U2

T U−3
L UL UL K nm 10−25 kg ps

3 −50.0 25.0 6.88 1.0 0.75 298 0.853 0.896 3.98
4 −26.0 12.1 11.28 1.0 0.65 300 1.106 1.1952 5.943
8 −43.2 27.6 10.09 1.0 0.65 300 1.343 2.3904 10.205
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where IC
(t) and ID

(t) are the kinetic and dissipative projected
momentum current, respectively,

IC
(t) =

1
3∑k

[σC
kk(t) − ⟨σ

C
kk⟩], (34)

ID
(t) =

1
3∑k

[σD
kk(t) − ⟨σ

D
kk⟩], (35)

and the stress tensor is calculated using the Irving–Kirkwood
formula,65

σC
kl =

1
V∑i<j

rijk(t)F
C
ijl +

1
V∑i

mvik(t)vil(t),

σD
kl =

1
V∑i<j

rijk(t)F
D
ijl(t).

(36)

The convergence of bulk viscosity from Eq. (33) is shown in Fig. S3
in the supplementary material.

IV. RESULTS AND DISCUSSION
We first investigate the thermodynamic behavior of the DPD

water model, given by the EOS. Following the analytical framework
described in Sec. III D, Fig. 2 compares the EOS obtained from sim-
ulations performed in the canonical ensemble and using the OBMD.
As depicted, the computed data are in good agreement with each
other and with the quadratic EOS, which for the DPD model reads
as

p = ρkBT + α̃r4
c aρ2. (37)

In Table IV, we present the properties of the different water models
used, calculated with OBMD, and compare them to experimentally
determined values. The EOS is determined only for the DPD models
with 4-to-1 and 8-to-1 mappings, with the speed of sound calcu-
lated from the fitted quadratic function. For MDPD and Martini
3, the speed of sound at water density is determined from Eq. (30)
using the central difference method. The MDPD EOS is highly sensi-
tive to density variations in negative pressure regions, which OBMD
simulations could not resolve due to phase separation.66 Similarly,

FIG. 2. EOS computed by performing closed (hollow blue circles) and OBMD (full
red triangles) simulations with the DPD 4-to-1 model. The speed of sound is deter-
mined by fitting the quadratic EOS of the DPD model, represented by the black
line. The standard error is smaller than the marker size.

TABLE IV. Speed of sound c and viscosity η of the different water models computed
using OBMD.

Model c (m/s) η (mPa s)

DPD 4-to-1 1498 ± 2 0.0948 ± 0.0003
DPD 8-to-1 1511 ± 2 0.210 ± 0.001
MDPD 3-to-1 1715.6 ± 0.1 0.4503 ± 0.0006
MDPD 4-to-1 1260.4 ± 0.1 0.1349 ± 0.0004
MDPD 8-to-1 1232.6 ± 0.1 0.1881 ± 0.0008
Martini 3 4039 ± 1 0.57 ± 0.01
References 147969 0.89069

the Martini 3 water model produced only slight equilibrium density
variations within the simulated pressure range, which is reflected in
the high speed of sound. Further increases in external pressure are
limited by the hard-core nature of the potential. Another potential
method to infer the EOS of Martini 3 water might involve calculat-
ing the low-frequency phase velocity from ultrasound simulations
at different system densities. However, this approach is challenging,
as the density tends to approach that of real water, regardless of the
initial density set.

Table IV shows that while DPD reproduces the speed of sound
in water, it does not simultaneously reproduce its viscosity. Simi-
larly, other supramolecular water models yield lower viscosity com-
pared to the experimentally determined one, with the Martini 3
model exhibiting the closest value. To this end, the viscosity could be
increased by incorporating an additional thermostat, i.e., the trans-
verse dissipative particle dynamics (TDPD) thermostat,67,68 which
offers a more sensitive and precise means of controlling the viscosity
than the standard DPD thermostat.

We proceed by imposing acoustic waves of different frequen-
cies, where the amplitude of the imposed ultrasound wave in DPD
simulations is set to Δp = 0.5pxx, while the amplitude is set to 600 and
1000 bar for MDPD and Martini 3 systems, respectively, to obtain
a discernible density variation signal Δρ0/ρ0 > 0.02. For all models,
the cycle-averaged density variation is consistent with the solution
of the traveling wave equation. As an example, Fig. 3 shows the

FIG. 3. Computed density variation through the ROI using the DPD 4-to-1 model
for an ultrasound wave of frequency ν = 0.2 THz. The error bars represent the
associated standard error, and the black line corresponds to the analytical solution.
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TABLE V. Phase velocity vp and ultrasound attenuation α at 0.13 and 0.27 THz for different supramolecular water models
calculated using OBMD.

Model vp (0.13 THz) (m/s) α (0.13 THz) (1/μm) vp (0.27 THz) (m/s) α (0.27 THz) (1/μm)

DPD 4-to-1 1502± 2 25± 1 1528± 8 80± 2
DPD 8-to-1 1612± 37 41± 2 1620± 14 93± 1
MDPD 3-to-1 1723± 18 36± 3 1871± 42 116± 9
MDPD 4-to-1 1330± 21 46± 8 1476± 46 149± 12
MDPD 8-to-1 1306± 31 58± 5 1312± 78 142± 10
Martini 3 1525± 19 85± 1 1433± 75 151± 1

cycle-averaged mass density variation through the ROI for the DPD
4-to-1 model. Similar figures for all models used are shown in Fig.
S2 of the supplementary material.

The computed phase velocities vp and attenuation coefficients
α are presented in Table V. For all supramolecular water models,
the phase velocities are of the expected order of magnitude, and, as
anticipated, waves with higher frequency exhibit greater attenuation.
The phase velocity increases with frequency for all models except for
Martini 3, which, contrary to the result presented in Table IV, closely
reproduces the experimental speed of sound in water. Nevertheless,
we found that the results for the Martini 3 model were the most
unstable among the models studied, showing sensitivity to the aver-
aging process. Consequently, the Martini 3 model appears to be less
suitable for acoustic wave simulations within the OBMD framework
compared to DPD and MDPD.

Next, we investigate in more detail the influence of DPD cut-
off and thermostat parameters on the viscosity, speed of sound,
and attenuation. We choose the DPD 4-to-1 model, as presented in
Table I, as a representative water model. Subsequently, each of the
three parameters rc, γ, and s are varied individually, while keeping
the others constant. By modifying γ, we influence the ratio between
the stochastic and the conservative forces. In contrast, changing the
cutoff rc alters the interaction range, which is equivalent to a change
in the effective density of the system.70 The complete collection of
parameters used in this study is presented in Table VI.

In the limit of small conservative parameters, i.e., when
arc/kBT ≪ 1, the DPD viscosity consists of two contributions, a
kinetic diffusive part ηK and a dissipative part ηD, so that η = ηK
+ ηD.21,71 In this limit, the radial distribution function is constant,
g(r) = 1. The kinetic part is attributed to the momentum exchange
between the diffusive particles and is in the limit a→ 0 propor-
tional to the self-diffusion coefficient of the fluid. In contrast, the
dissipative part stems from the dissipative forces that reduce the
relative velocities of the particle pairs. It can be evaluated theoreti-
cally by considering shear stress in a DPD fluid under uniform shear
flow. For the general case of rc > 0 and 0 < s ≤ 1, the contributions
are

TABLE VI. Parameters used in the DPD parameter study.

rc (UL) 0.8, 0.9, 1.0
γ (UM/UT) 2.5, 3.5, 4.5, 5.5, 6.5
s (/) 0, 0.25, 0.5, 0.75, 1.0, 2.0

ηD =
4πγr5

c ρ2

5(s + 1)(s + 2)(2s + 1)(2s + 3)(2s + 5)
, (38)

ηK =
3(2s + 1)(2s + 2)(2s + 3)mkBT

16πr3
c γ

. (39)

In addition, potential interactions contribute to the viscosity. The
potential term becomes particularly relevant when increasing the
repulsion parameter (arc/kBT ≫ 1).72 It has been shown that while
the kinetic viscosity decreases with increasing a, the dissipative con-
tribution remains nearly independent of it. Here, we address the
regime of high conservative forces, where the viscosity is deter-
mined by a combination of dissipative and potential terms.72 We
summarize the main results of the DPD parameter study in Fig. 4.

As shown in Fig. 4 (upper panels), shear viscosity increases lin-
early with increasing dissipative force parameter γ and decreases
with increasing parameter s. Comparing this observation with the
theoretical predictions of Eqs. (38) and (39), we confirm that the
dissipative term governs over the kinetic contribution in the large
repulsion regime.72 Moreover, the attenuation coefficient follows a
similar trend, increasing with γ and decreasing with s (middle panels
of Fig. 4), as observed for the shear viscosity, confirming the linear
relationship between attenuation and viscosity proposed by the ther-
moviscous attenuation theory, see Eq. (10). Notably, the attenuation

FIG. 4. Calculated viscosity η, attenuation coefficient α at 0.27 THz, and speed
of sound c as a function of parameters rc , γ, and s. The standard error is smaller
than the marker size.
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FIG. 5. Computed phase velocity vp (a) and attenuation coefficient α (b) as functions of frequency ν for the DPD 4-to-1 mapping, where the shaded area indicates the
standard error of the data points. In panel (a), the gray solid line represents the theoretical fit of Eq. (7), with τs = (0.128 ± 0.004) ps and c = (1498 ± 2) m/s. In panel
(b), the gray solid line is the fit of Eq. (8), with τs = (0.44 ± 0.04) ps and c = (5.9 ± 0.2) × 103 m/s. The dashed lines represent the theoretical predictions from Eqs. (7)
and (8) using the values computed in this work for the DPD 4-to-1 model (η = 0.0948 mPas, ηB = 0.135 mPas, and c = 1498 m/s).

is uncorrelated with viscosity only in the case of the changing cut-
off. We observe higher attenuation when a shorter cutoff is used, as
acoustic energy is rapidly dissipated due to the short-range interac-
tions. On the other hand, the speed of sound, determined from the
EOS computed using OBMD is independent of γ and s but increases
significantly with rc, as shown in Fig. 4 (lower panels). This is con-
sistent with the theoretical prediction for the thermodynamic speed
of sound,

c =

√

kBT
m
+

2α̃ar4
c ρ

m
, (40)

derived from the DPD EOS, Eq. (37).
Finally, we investigate the influence of wave frequency on phase

velocity vp and attenuation coefficient α using the DPD 4-to-1
model. Theoretical predictions from Eqs. (7) and (8) using the prop-
erties computed in this work (dashed lines shown in Fig. 5) show
excellent agreement with our simulation results, particularly for the
phase velocity [Fig. 5(a)], where the fitted values closely match the
computed values. However, the data points and theoretical predic-
tions for the attenuation coefficient diverge in the high-frequency
limit [Fig. 5(b)], which may indicate that simulations underestimate
the attenuation in this regime.

It should be noted that in our simulations, the attenuation is
significantly lower than in experiments, which is a consequence of
the low viscosity of our DPD fluid. From our simulations, we find
τs ≈ 0.116 ps. This is about an order of magnitude lower than the
real value τs ≈ 1.6 ps, Eq. (4), consistent with the lower viscosity of
the DPD fluid compared to water.

V. CONCLUSIONS
In this work, we studied acoustic properties, i.e., speed of

sound, and ultrasound attenuation, of liquid water employing differ-
ent supramolecular models. The comparison provides information
on the strengths and limitations of each water model in terms of its
ability to simulate realistic water behavior under non-equilibrium
conditions. Notably, all models, i.e., DPD, MDPD, and Martini 3,

successfully reproduce the density signal associated with a travel-
ing wave in response to a sinusoidal pressure disturbance, despite
the significantly higher pressure required to generate a detectable
density signal in the Martini 3 and MDPD models. In addition,
the observed phase velocities are of the expected order of magni-
tude, further validating the efficacy of these models in simulating
acoustic phenomena. Our simulation results agree with the predic-
tions of thermoviscous attenuation, accurately reproducing both the
dispersion and the frequency-dependence of attenuation in the fluid.

The presented method is a significant first step toward devel-
oping a more general virtual ultrasound machine. This approach
allows us to directly examine the excitation modes of biomolecules
in water and quantify their presence within the simulation box.5
The ultimate aim is to extend this method to simulate ultrasonic
waves at a larger scale, specifically targeting lower frequencies in
the MHz range, where the challenge is overcoming freezing artifacts
that arise when moving beyond the molecular scale. Moreover, our
methodology holds potential for a wide range of applications beyond
biomolecular studies. Refining the simulation parameters and mod-
els allows us to explore complex fluid dynamics scenarios, including
multiphase flows and interactions in heterogeneous systems. The
ability to simulate ultrasound propagation in such a detailed man-
ner opens up new possibilities for research in soft matter physics,
materials science, and biomedical engineering.

SUPPLEMENTARY MATERIAL

The supplementary material includes the equilibrium OBMD
mass density profile, cycle-averaged density signals corresponding
to ultrasound waves at various frequencies for all models, and the
convergence of the bulk viscosity calculation.
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