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Density–Nematic Coupling in Isotropic Solution of DNA:
Multiscale Model

Daniel Svenšek,* Jaka Sočan, and Matej Praprotnik

Monte Carlo simulations of isotropic solutions of double-stranded DNA
(deoxyribonucleic acid) are performed using the well-established oxDNA
model. By comparing the fluctuation amplitudes with theoretical predictions,
the parameters of a generic macroscopic model of an isotropic linear polymer
solution/melt are determined. A multiscale continuum field model is thus
obtained, corresponding to the full specificity of the isotropic phase of
double-stranded DNA in the usual B-form as perceived at the macroscopic
level. Present research is particularly focused on the coupling between spatial
concentration/density variations of the polymer and the emerging nematic
orientation order of the chains. This rather unfamiliar, only recently described
phenomenon, inherent to linear polymers, is outlined and interpreted.
Quantitative predictions are provided for the degree of nematic order induced
by concentration gradients in isotropic solutions of double-stranded DNA.

1. Introduction

In solutions/melts of linear polymers, gradients of orientational
order of polymer chains are coupled to gradients of their concen-
tration/density. This macroscopic consequence of the simple ex-
istence of microscopic chains is known as splay–density coupling
in nematic polymers, where the splay distortion of the director
leads to a density gradient and vice versa.

Traditionally, this phenomenon has been described by the
Meyer-de Gennes continuity constraint[1–10] for the nematic di-
rector field n(r) – direction of the polymer chain, valid in the ab-
sence of hairpins (sharp, ideally point-like 180° backfolds of the
chain[11]),

∇ ⋅ (𝜌sn) = 𝜌+ − 𝜌− (1)
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where 𝜌s(r) is the surface number density
of polymer chains perforating the plane per-
pendicular to n and 𝜌+(r) and 𝜌−(r) are vol-
ume densities of the beginnings and end-
ings of the chains, which fill the voids be-
tween the chains created by splay, Figure 1,
and thus weaken the constraint Equation (1)
on 𝜌s and n.

Nevertheless, hairpin turns of chains are
a characteristic feature of nematic order,
and despite the awareness of this fact and
the fact that Equation (1) seems to be clearly
vectorial in nature, it was formally shown
only a decade ago that Equation (1) gener-
alizes to a rigorous continuity equation for
the polar order vector a(r) instead of the ap-
olar nematic director,[12,13]

∇ ⋅ (𝜌l0a) = 𝜌+ − 𝜌− (2)

where the polymer length per unit volume 𝜌l0 is the key quantity.
That is, l0 is the length of arbitrarily (but of course appropriately)
chosen chain segments and 𝜌 is their volume number density, so
that the product, the volume density of the polymer length, is a
physical fact independent of the choice of the segments. By defi-
nition, the polar order vector a describes collective (mesoscopic)
polar orientational order of the chains, which can be defined if
the chains themselves are polar (directed), i.e., composed of po-
lar monomers.

It was also shown how Equation (1) can be formally adapted so
that it can be applied to a nonpolar, uniaxial nematic case with an
arbitrary density of hairpins. This is where the so-called recovered
polar order and new effective chain ends with double “strength”
corresponding to hairpins come into play (see refs. [13, 14] for
the full story). In the limit of large concentration of hairpins,[15]

however, the continuity equation for the recovered polar order,
although still valid, reduces to a trivial identity and therefore loses
its meaning.

Nematic orientational order, which is quadrupolar rather than
polar, is described by the symmetric traceless nematic order ten-
sor (the quadrupole moment of the orientational distribution

function) Qij(r) = 3
2

(⟨titj⟩ − 1
3
𝛿ij

)
, where, in the case of linear

polymers, the averaging ⟨⟩ is over unit vectors t indicating the
directions of the chain segments; 𝛿ij is the Kronecker delta. The
director n appearing in Equation (1) is then the principal axis of
Qij. A rigorous conservation law, analogous to Equation (2) for
polar order, was derived for quadrupolar (nematic) order,[16]
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Figure 1. Schematics of splay deformation in a nematic phase. The density
of long chains inevitably decreases as the chains spread. Ensembles of
shorter chains (top) contain more chain ends that can fill the voids more
easily, thus mitigating the decrease in density. Backfolds (bottom) also fill
the voids, but reduce orientational ordering unless they are pointlike U
turns (hairpins), which are favored in the nematic phase. In this case, they
act as chain ends and can fill the voids similar to the top picture.

where the volume density g(r) of chain end directions t, defined
as pointing inward, and the volume density (𝜌l0k)(r) of deflec-
tions of consecutive segments play the role of the sources in
this continuity equation; k(r) is the local average chain curva-
ture vector. The average chain curvature vector source reflects the
effect of general chain folds (including hairpins as their special
case), which can fill the voids created by splay in a similar way as
the chain ends do, Figure 1 (bottom). The stiffer and longer the
chains, the more expensive are the sources and the stronger is
the coupling Equation (3) between gradients of Qij and 𝜌. Anal-
ogous to the polar case Equation (2), the tensorial conservation
law Equation (3) is an exact macroscopic implication of the sim-
ple existence of the microscopic polymer chains.[17]

Somewhat unexpectedly, however, Equation (3) is relevant not
only for nematic linear polymers, but also for isotropic linear
polymers, whether or not they exhibit an isotropic–nematic tran-
sition. That is, it applies to any fluid linear polymer (i.e., so-
lution or melt), e.g., synthetic polymers such as polyethylene,
polyvinyls, polyamides, polyesters, polystyrene, polycarbonates,

etc., and also to a solution of deoxyribonucleic/ribonucleic acid
(DNA/RNA) and other linear biopolymers. Why this relevance?
Unlike polar order fluctuations, variations of nematic order 𝛿Qij
are generally coupled in the lowest order to variations of polymer
density/concentration 𝛿𝜌 even in an orientationally disordered,
isotropic phase with 𝜌 = 𝜌0 and Qij = 0 in equilibrium, as follows
from linearization of Equation (3):

𝜌0l0 𝜕j𝛿Qij +
1
2
l0 𝜕i𝛿𝜌 = 3

2
𝛿gi +

3
2
𝜌0l0 𝛿ki (4)

This applies to thermal fluctuations as well as to arbitrary, e.g.,
externally imposed variations 𝛿𝜌(r) and 𝛿Qij(r). Of course, there
must exist a microscopic object that can be oriented in the first
place (in a fluid of spherical particles, for example, this is not pos-
sible), but in polymers such an object is always the polymer chain
itself (i.e., even if it consisted of spherical monomers). There-
fore, for example, an externally imposed concentration gradient
of DNA (or other linear polymer) will induce nematic ordering
via the coupling Equation (4) and thereby also optical anisotropy
(birefringence) in the otherwise isotropic solution, as has already
been shown for the case of a generic worm-like polymer melt.[16]

Such osmotic-stress-induced birefringence is similar to shear
flow-induced birefringence in fluid polymers and to the stress-
optic law in elastic solid dielectric materials (a direct coupling be-
tween strain and dielectric tensors). However, the key difference
is that osmotic-stress-induced birefringence occurs already in a
static liquid where no strain or strain rate tensor exists to cou-
ple with the dielectric tensor. Instead, the coupling, which arises
from the microscopic polymer chain connectivity, occurs via the
concentration gradient as expressed by the tensorial continuity
equation Equation (3).

To the best of our knowledge, birefringence induced by poly-
mer concentration gradients has not yet been evidenced in the lit-
erature, but the basic arguments presented above suggest that it
should be a very persistent, geometrically enforced phenomenon.
To theoretically describe this interesting macroscopic mecha-
nism and other phenomena at the macroscopic level, a macro-
scopic model of the specific polymer is required, which, in order
to achieve specificity, must be based on the microscopic informa-
tion of the concrete system. Hierarchical multiscale modelling
has so far proven to efficiently characterize phenomena, which
need to be addressed at various levels of complexity,[18] such as
surface catalyst optimization,[19] composite material architecture
determination[20] and prediction of multi-principal alloy behav-
ior under stress.[21] Here, we employ a multiscale solution that
involves a theoretical description of our phenomena at the macro-
scopic level in conjunction with a micro- to mesoscopic descrip-
tion of our polymer of interest. We set up a minimal macroscopic
continuum model for a generic isotropic linear polymer solution
or melt and determine its parameters corresponding specifically
to the isotropic solution of double-stranded (ds)DNA in B-form
at various chain lengths and concentrations, as simulated with
the well-established oxDNA model.[22] The B-form is the most
common isoform of dsDNA, where the planes of the nucleic acid
bases are nearly perpendicular to the helical axis. It is the predom-
inant form in biological systems and in vitro aqueous solutions
at (quasi) physiological conditions.
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Figure 2. A representation of dsDNA chains of lengths 80 (left) and 5000 (right) base pairs, as modeled by oxDNA. In the oxDNA coarse-grained force
field, each nucleotide (denoted by the red shape) is represented as a rigid body interacting with its surroundings through pairwise interactions, i.e.,
backbone connectivity and repulsion, as well as nucleobase stacking, repulsion and hydrogen-bonding. In present work, we treat two hydrogen-bound
nucleotides – the base pair (denoted by the green shape) – as a dsDNA monomer.

2. Multiscale Model

Following,[16] we use a minimal macroscopic free-energy density
model of an isotropic linear polymer solution or melt that is ca-
pable of describing variations of polymer density, nematic orien-
tational order of chains, and coupling between the two:

f = 1
2
B
(
𝛿𝜌

𝜌0

)2

+ 1
2
A
(
𝛿Qij

)2 + 1
2
L
(
𝜕k𝛿Qij

)2

+ 1
2
G
(

2
3
𝜌0l0

)2
[
𝜕j𝛿Qij +

1
2
𝜕i

(
𝛿𝜌

𝜌0

)]2

(5)

where the variables are the variation of the relative number den-
sity of the segments 𝛿�̃� = 𝛿𝜌∕𝜌0, 𝜌0 is its equilibrium value, and
the variation of the nematic order tensor 𝛿Qij, which is zero in
equilibrium. The first term describes the cost of density or con-
centration variations, with B the bulk modulus (in the case of
a melt) or the concentration susceptibility (in the case of a so-
lution). The second term captures the cost of nonzero nematic
order, which is disfavored in the isotropic system, A is the “stiff-
ness” of the nematic order, i.e., the nematic order modulus. The
third term (nematic elastic term) penalizes the gradients of the
nematic order. In contrast to the nematic phase, where there
are several elastic terms, three by default corresponding to splay,
twist and bend distortion modes of the nematic director, there is
only one elastic term in the isotropic system. This is due to the
fact that there is no preferred direction in equilibrium and thus
no distinction between different distortion modes of nematic
order is possible. The last term describes the density–nematic
coupling. It is enforced by a quadratic potential penalizing the
sources of the tensorial conservation law, i.e., the right-hand side
of Equation (4) expressed by its left-hand side containing the vari-
ables; G( 2

3
𝜌0l0)2 ≡ G̃ is the strength of the coupling.

Once such a model is established, it is useful in many ways.
It provides amplitudes of thermal fluctuations of polymer den-
sity and nematic order, the correlation between these two fluctu-
ations, it describes the effects of externally induced density vari-
ations or induced nematic order, it can also be supplemented by
contributions from static external fields.

The parameters of the model Equation (5), B, A, L, G̃, are un-
known and must be determined. A well-established procedure
for this is to compare the amplitudes of long-wave fluctuations
predicted by Equation (5) with the same fluctuations extracted
from the actual experimental system. Traditionally, this is done
with different types of scattering experiments (X-ray, neutron,

and light scattering).[23–27] Nowadays, a complementary and very
convenient in silico multiscale strategy is also possible, i.e., per-
forming microscopic simulations and calculating the fluctuation
amplitudes directly from numerical data.[13,16,28–35] Here, we will
use conformational ensembles of dsDNA produced by oxDNA
model[22] Monte Carlo (MC) simulations, Figure 2.

To obtain the macroscopic fluctuation amplitudes, Equa-
tion (5) is expressed in Fourier space,[36]

f (q) = 1
2
B|𝛿�̃�(q)|2 + 1

2
(A + Lq2)|𝛿Qij(q)|2

+ 1
2
G̃|||qj𝛿Qij(q) + 1

2
qi𝛿�̃�(q)|||2 (6)

where

𝛿�̃�(q) = ∫ d3r 𝛿�̃�(r)e−iq⋅r , 𝛿Qij(q) = ∫ d3r 𝛿Qij(r)e−iq⋅r (7)

Thus, the free energy F = ∫ d3r f is now a sum over the Fourier
modes F = (1∕V)

∑
q f (q), where V is the volume of the sys-

tem. By equipartition, the energy corresponding to a stand-
alone quadratic contribution fi(q) of the energy f (q) is ⟨fi(q)⟩∕V =
kBT∕2, with kB the Boltzmann constant and T the temperature.
To determine the fluctuation amplitudes, the quadratic form
Equation (6) is diagonalized (see [37] Supporting Information of
ref. [16]) and expressed by terms purely quadratic in proper linear
combinations of the variables, from which the fluctuation ampli-
tudes follow by equipartition. Since the system is isotropic, we
can assume without loss of generality q = qêz for the fluctuation
wave vector, where z is an arbitrarily chosen direction defining
the z axis of the coordinate system (the results are the same for
any choice of z axis). Axes x and y are then arbitrarily chosen
in the plane perpendicular to z and all results at a given q are
invariant to rotations of the tensors in the xy plane, in particu-
lar ⟨|𝛿Qxz|2⟩ = ⟨|𝛿Qyz|2⟩ and ⟨|𝛿Qxx − 𝛿Qyy|2⟩ = 4⟨|𝛿Qxy|2⟩. The
fluctuation amplitudes are[16]

1
N0

⟨|𝛿Qxy|2⟩ = kBT
2

1
𝜌0

1
A + Lq2

(8)

1
N0

⟨|𝛿Q{xz,yz}|2⟩ = kBT
2

1
𝜌0

1

A + (L + 1
2
G̃)q2

(9)

1
N0

⟨|𝛿Qzz|2⟩ = kBT
2

4
𝜌0

[
3A +

(
3L + 8G̃B

4B + G̃q2

)
q2

]−1

(10)
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1
N0

⟨|𝛿�̃�|2⟩ = kBT
2

8
𝜌0

[
4B +

3G̃(A + Lq2)q2

3A + (3L + 2G̃)q2

]−1

(11)

1
2N0

⟨𝛿�̃�∗ 𝛿Qzz + 𝛿�̃� 𝛿Q∗
zz⟩

= −
kBT

2
1
𝜌0

8G̃q2

12AB + [12BL + (3A + 8B)G̃]q2 + 3G̃Lq4
(12)

where N0 ≡ 𝜌0V is the total number of segments in the system.
Dividing the fluctuation amplitudes, Equations (8)–(12), by N0 is
convenient, as in this way they become intensive quantities that
do not trivially depend on N0. Equation (12) gives the correlation
of 𝛿�̃�(q) and 𝛿Qzz(q), i.e., only the component 𝛿Qzz is directly cou-
pled to density. The fluctuation ⟨|𝛿Qxy|2⟩ is the only one that does
not depend on the coupling strength G̃, i.e., the difference be-
tween ⟨|𝛿Qxy|2⟩ and ⟨|𝛿Qxz|2⟩ = ⟨|𝛿Qyz|2⟩ is a clear signature of
the density–nematic coupling in the isotropic phase! Note that
𝛿Qzz = −(𝛿Qxx + 𝛿Qyy) because of the tracelessness of Qij.

In Equations (8)–(12), all amplitudes 𝛿Qxy, 𝛿Qxz, 𝛿Qyz, 𝛿Qzz,
and 𝛿�̃� of originally dimensionless quantities are Fourier compo-
nents Equation (7) and therefore have dimensions of V . In mi-
croscopic simulations, on the other hand, the Fourier transform
is not performed by volume integration of continuous fields, but
by summation over discrete polymer segments, so that the trans-
formed quantities remain dimensionless. To allow direct com-
parison of the fluctuation amplitudes, we multiply the Equations
(8)–(12) by 𝜌2

0 so that they express the same dimensionless quanti-
ties ⟨|𝜌0𝛿Qxy|2⟩∕N0,..., and ⟨|𝜌0𝛿�̃�|2⟩∕N0 = ⟨|𝛿𝜌|2⟩∕N0. Moreover,
from now on we also use dimensionless units by expressing en-
ergy relative to kBT and length relative to l0. Specifically, the unit
of the parameters B, A is kBT∕l30, and the unit of the parameters
L, G̃ is kBT∕l0.

With all that, the form of the macroscopic fluctuation ampli-
tudes Equations (8)–(12), which can be compared directly with
values obtained from the oxDNA simulations, is

1
N0

⟨|𝜌0𝛿Qxy|2⟩ = 1
2
𝜌0

1
A + Lq2

(13)

1
N0

⟨|𝜌0𝛿Q{xz,yz}|2⟩ = 1
2
𝜌0

1

A + (L + 1
2
G̃)q2

(14)

1
N0

⟨|𝜌0𝛿Qzz|2⟩ = 2𝜌0

[
3A +

(
3L + 8G̃B

4B + G̃q2

)
q2

]−1

(15)

1
N0

⟨|𝛿𝜌|2⟩ = 4𝜌0

[
4B +

3G̃(A + Lq2)q2

3A + (3L + 2G̃)q2

]−1

(16)

1
2N0

⟨𝛿𝜌∗ 𝜌0𝛿Qzz + 𝛿𝜌 𝜌0𝛿Q∗
zz⟩

= −4𝜌0
G̃q2

12AB + [12BL + (3A + 8B)G̃]q2 + 3G̃Lq4
(17)

3. Comparison of Fluctuations, Extracted Model
Parameters

The full comparison of the macroscopic fluctuation amplitudes,
Equations (13)–(17), relevant in the long-wavelength limit, with
the same long-wavelength fluctuations obtained from the sim-

ulations is shown in Figure 3 for all six chain lengths and at
monomer density 𝜌0 = 5𝜌00 as an example. For a given chain
length and monomer density, the fluctuations Equations (13)–
(16) are fitted simultaneously to determine the model param-
eters B, A, L, G̃ for that chain length and monomer density.
The cross-correlation Equation (17) is not fitted but only plot-
ted with the determined parameters. For other simulated den-
sities 𝜌00, 2𝜌00, 10𝜌00, and 20𝜌00, the q-dependences of all fluctu-
ations and their agreements/discrepancies with theoretical pre-
dictions are very similar. The statistical errors are insignificant
everywhere, except for the density fluctuation at the lowest q
points.

Despite the fact that the system is isotropic (⟨Q⟩ = 0) and far
from any pretransitional orientational effects, the orientation and
density fluctuations indeed reveal the fundamental implications
of its linear chain structure. The difference between the Qxy and
Qxz fluctuations is a direct consequence of the density–nematic
coupling and serves as a first indicative measure of the mag-
nitude of the coupling strength G̃ in Equation (14). Already in
Figure 3, we can immediately see that it increases systematically
with the length of the chains, as expected. According to the dis-
cussion after Equation (3) longer chains have fewer ends and con-
sequently the corresponding source g is more expensive, i.e., its
fluctuation 𝛿g in Equation (4) is smaller and thus the fluctuations
of 𝜌 and Q are more strongly coupled.

The q-dependence of the density fluctuation in Figure 3 is also
due to this coupling – for G̃ = 0, |𝛿𝜌|2 would be independent
of q in this low-q region. We see that it is again much stronger
for longer chains. The ultimate manifestation of the density–
nematic coupling is, of course, the nonzero cross-correlation of
𝛿𝜌 and 𝛿Qzz shown in the lower diagrams of Figure 3. Again, it
increases systematically with the length of the chains.

Before turning to the details, let us put the results presented
in Figure 3 in an overall context. First, they clearly show the pres-
ence of the density–nematic coupling. Second, they also show
some deviations from the macroscopic model Equation (5) that
incorporates this coupling in the simplest manner. We should not
forget that the continuity equation Equation (3) is exact and not
an approximation. Therefore, it will inevitably manifest itself in
some form in the variations of density and orientational order. It
is just that the energy cost of the sources of this continuity equa-
tion cannot be fully described by the universal quadratic potential
of the model Equation (5), and hence the observed discrepancies
in Figure 3.

Our main result is the dependence of the parameters of the
model Equation (5) on the polymer chain length Ns and the den-
sity of the monomers 𝜌0, shown in Figure 4 and in Table 1. The
expression Equation (5) is a free-energy density and therefore its
parameters are proportional to the monomer density 𝜌0 in first
approximation in the absence of other effects. No peculiarities
are expected for the compressibility modulus B and nematic or-
der stiffness A, while this is not so clear in advance for the other
two terms with gradients. The plot of the ratios A∕𝜌0, L∕𝜌0, G̃∕𝜌0,
and B∕𝜌0 in Figure 4 shows that for densities 𝜌00 to 20𝜌00 this
proportionality is practically exact for all parameters, indicating
that the system is essentially dilute (based on crystallographic
data,[38] at 𝜌0 = 20𝜌00 the solute occupies only about 0.012% of
the simulation box volume). There are only minor systematic de-
viations within the error bars for L and G̃. However, noticeable

Macromol. Rapid Commun. 2024, 2400382 2400382 (4 of 12) © 2024 The Author(s). Macromolecular Rapid Communications published by Wiley-VCH GmbH

 15213927, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

arc.202400382 by K
em

ijski Institut, W
iley O

nline L
ibrary on [27/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.mrc-journal.de


www.advancedsciencenews.com www.mrc-journal.de

Figure 3. Fluctuation amplitudes and fits to Equations (13)–(16) for different chain lengths Ns and base pair density 𝜌0 = 5𝜌00 (≈ 250000 base pairs).
The cross-correlation curves (dashed) are direct plots of Equation (17) (no fitting). Measured standard deviations are shown by error bars that are too
small to be visible except for density fluctuations and cross-correlations of short chains. The lowest q > 0 bin is omitted everywhere because of large
statistical errors for short chains.

discrepancies, particularly in L∕𝜌0 and G̃∕𝜌0, appear for the
higher densities of 100𝜌00 and 200𝜌00.

The decreasing dependence of the compressibility modu-
lus B on the chain length, Figure 4, is in agreement with
the known theoretical result for an ideal polymer chain (en-
tropic compressibility modulus)[39], pp. 19–20].[40] Namely, in
the limiting case of weak confinement, i.e., when the average
gyration radius (rms radius) rg of the chain is much smaller
than the confining box of volume V, the pressure exerted by
the ideal chain is simply p ≈ kBT∕V and the compressibility

modulus is B = (1∕𝜌)𝜕p∕𝜕𝜌 = −V𝜕p∕𝜕V ≈ kBT∕V ≈ p. That is,
in this limit the ideal chain behaves like a single ideal gas
particle. For Nc independent ideal chains, this means B ≈ p ≈
NckBT∕V = 𝜌0kBT∕Ns. Thus, in our dimensionless units the ra-
tio B∕𝜌0, which is shown in Figure 4, would ideally be B∕𝜌0 ≈
1∕Ns, i.e., log(B∕𝜌0) ≈ − log Ns. The log–log plot in Figure 5 in-
deed shows a quasi-linear dependence with a slope close to −1.
For longer chains, the line rises slightly, which may indicate
that rg of these chains is no longer very small compared to the
size of the box, and their segments begin to make individual
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Figure 4. The central result of the simulation: the dependence of the parameters of the model Equation (5) on the polymer chain length Ns (note the
logarithmic scale) and the density of the monomers 𝜌0. The proportionality of the nematic order stiffness A and compressibility B to 𝜌0 is exact. For
better visibility, the points corresponding to different densities are slightly shifted horizontally. A curve ≈ 3.60 (1∕Ns + 1∕82.5) is fitted to the A∕𝜌0 data.

contributions to the pressure. For the two higher densities,
B∕𝜌0 is slightly higher and in particular the lines in Figure 5 rise
more strongly, which points to the effect of chain’s reduced free
volume. This volume, rather than the full volume of the box, is
now to be compared to the volume 4𝜋r3

g ∕3 occupied by a chain.
Also of entropic origin is the decreasing dependence of the

nematic order modulus A on the chain length in Figure 4. For
a fixed number of segments, stochastic fluctuations of the col-
lective (mesoscopic average) orientational order are smaller for
independent segments than for segments bound in a chain. This
is simply because the latter have fewer independent orientational
degrees of freedom and contribute fewer independent random
orientations to the average orientation. As a result, statistical vari-

ations of the average orientation are larger and thus a nonzero ne-
matic order is more probable, which translates into a smaller A.
For longer and hence fewer chains, however, the intra-chain ori-
entational freedom of the segments begins to dominate, which is
larger for more flexible chains. A curve A(Ns)∕𝜌0 ≈ 3.60 (1∕Ns +
1∕82.5) fits well the A∕𝜌0 data in Figure 4, where the last term
is of the order of the inverse persistence length of the chain 𝜉p
in units of the segment length, which will be discussed in more
detail in Section 4.

The non-monotonic behavior of the elastic constant L∕𝜌0,
Figure 4, is rather surprising and remains unaccounted for. It
occurs in the regime, where the chain length grows larger than
the persistence length, i.e., when energetic nematic elasticity

Table 1. Parameters of the model Equation (5) at monomer densities 𝜌00, 20𝜌00, and 100𝜌00. The values are the same as plotted in Figure 4, the
corresponding units are indicated (these are the kBT, l0 units defined at the end of Section 2). The listed values of the elastic constant, for example, range
from L = 1.20 × 10−11N (for 𝜌 = 𝜌0 = 2.5 × 1028m−3 ≈ 0.050mg ml−1 and Ns = 16) to L = 4.32 × 10−9N (for 𝜌 = 100𝜌0 ≈ 5.0mg ml−1 and Ns = 160).

𝜌0 [2.5 × 1028m−3] 16 bp 40 bp 80 bp 160 bp 333 bp 1000 bp 5000 bp

A∕𝜌0 [4.12 × 10−21J] 1 0.272 0.129 0.0819 0.0669 0.0574 0.0513 0.0498

20 0.271 0.129 0.0817 0.0660 0.0569 0.0513

100 0.270 0.123 0.0871 0.0727

L∕𝜌0 [4.76 × 10−40Jm2] 1 1.01 3.30 7.96 6.62 5.68 5.93 6.08

20 1.04 2.64 6.89 5.84 5.66 5.92

100 1.18 3.91 3.62 3.63

G̃∕𝜌0 [4.76 × 10−40Jm2] 1 2.73 6.08 13.6 30.3 46.3 64.0 72.2

20 2.84 7.86 14.8 35.1 52.8 69.6

100 3.11 8.62 25.9 40.5

B∕𝜌0 [4.12 × 10−21J] 1 0.0620 0.0241 0.0115 0.00499 0.00238 0.000800 0.000222

20 0.0625 0.0234 0.0114 0.00458 0.00216 0.000869

100 0.0635 0.0249 0.0113 0.00683

Macromol. Rapid Commun. 2024, 2400382 2400382 (6 of 12) © 2024 The Author(s). Macromolecular Rapid Communications published by Wiley-VCH GmbH
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Figure 5. The log–log plot of B∕𝜌0 against chain length Ns shows a quasi-
linear dependence. For better visibility, the points corresponding to dif-
ferent densities are slightly shifted horizontally. Excluding the two highest
densities, the slope of the line through the points Ns = 16, 40, 80 is ap-
proximately −1.17.

transitions to entropic elasticity. We should bear in mind, how-
ever, that our system is in the isotropic phase, where one cannot
expect a well-defined nematic elastic constant.

4. Density–Nematic Coupling Strength

Our prime focus is on the strength of the density–nematic cou-
pling and its dependence on the polymer length. As confirmed by
the G̃∕𝜌0 plot in Figure 4, the importance of the coupling, i.e., the
relative magnitude of G̃ with respect to the other model parame-
ters, does not significantly depend on density. In other words, the
coupling is already equally effective in the dilute limit and thus
ubiquitous for all solutions of DNA, as well as for linear poly-
meric liquids in general! Moreover, from Table 1 it can be seen
that the coupling strength G̃ is substantially larger than the ne-
matic elastic constant L, which will prove to be important in the
following. The ratio G̃∕L increases with chain length and already
becomes larger than ten for Ns = 1000. Note that the G̃ values
given represent the actual “measured” strengths of the density–
nematic coupling for DNA solution as simulated by the oxDNA
model. This is our main empirical result, which fully quantifies
the density–nematic coupling. Before comparing it with a theo-
retical model in Section 4.1, one of our ancillary interests, let us
put it in a practical perspective and estimate what it means for
the magnitude of the induced nematic order effect. That is, let
us connect spatial variations in polymer concentration with the
degree of nematic ordering they induce.

We now assume an externally imposed monomer number
density profile 𝛿𝜌 depending only on the z coordinate for simplic-
ity. A nonhomogeneous concentration profile can, for example,
be sustained between reservoirs with different chemical poten-
tials. Inclusions such as droplets, bubbles, or impurities – fre-
quently encountered in experimental samples – also act as spa-
tial modulators of the chemical potential. A wave-like, periodic or
solitonic concentration profile frequently results spontaneously
from a spatial instability in a frustrated system, including phase

separation. It follows from the model Equation (5) with the non-
linearized conservation law Equation (3) for generality (Support-
ing Information of ref. [16] Section VI, Equation (49))

(L + G′𝜌2)𝜕2
z𝛿Qzz + 2G′𝜌(𝜕z𝛿𝜌)𝜕z𝛿Qzz

+ G′ (𝛿Qzz +
1
2
) 𝜌𝜕2

z𝛿𝜌 − A𝛿Qzz = 0 (18)

where G′ ≡ G
(

2
3
l0
)2

. This rather complicated connection be-

tween the externally imposed 𝛿𝜌(z) profile and the resulting uni-
axial nematic order profile 𝛿Qzz(z) can be reduced to extremely
simple expressions in the following special limiting cases.

i) A small amplitude wave-like (sinusoidal) modulation of relative
monomer density 𝛿�̃� = 𝛿𝜌∕𝜌0 with wave vector q = qêz results in
the explicit wave-like solution for the induced nematic order,

𝛿Qzz(z) = −1
2

G̃q2

A + (L + G̃)q2
𝛿�̃�(z) (19)

For long-wavelength density modulations, i.e., when the wave-

length is large with respect to 2𝜋
√

(L + G̃)∕A, which is of the
order of the persistence length of the chain, we have (L +
G̃)q2 ≪ A and thus only a small induced nematic order 𝛿Qzz ≈
− 1

2
(G̃q2∕A) 𝛿�̃�. Conversely, for short-wavelength modulations,

the induced nematic order is 𝛿Qzz ≈ − 1
2
(1 + L∕G̃)−1 𝛿�̃� and is of

the same order as the relative density variation. The minus sign
indicates prolate (axial) ordering of the polymer chain in regions
of decreased concentration and oblate (planar) ordering in re-
gions of increased concentration. Note that a perfect prolate order
has Qzz = 1 and a perfect oblate order has Qzz = −1∕2.

ii) When a general concentration profile varies slowly on the

length scale
√

(G̃ + L)∕A, we get from Equation (18) in the limit
𝛿Qzz → 0

𝜕2
z Qzz(z) ≈ −1

2
1

1 + L∕G̃
𝜕2

z𝛿�̃�(z) (20)

That is, a non-uniform relative concentration gradient induces a
comparably strong spatial variation of the gradient of the uniaxial
nematic order.

We see that the ratio L∕G̃ is the relevant parameter in both
cases. If it is small, as we found to be the case in DNA solution,
the induced nematic order is substantial – it is of the same order
as the relative variation of polymer concentration.

4.1. Comparison With a Theoretical Model for G

The observed leading proportionality of G̃ to the monomer den-
sity 𝜌0, i.e., the leading 1∕𝜌0 dependence of the original parame-
ter G of Equation (5), is corroborated by the simplest models of
the free-energy costs of the sources of Equations (3)–(4) devel-
oped in ref. [16]. In these models (see Supporting Information of
ref. [16] for derivation), the chain ends are treated as independent
vectors (ideal gas of dipolar particles) that contribute to g, and
the kinks between chain segments as independent contributions
to 𝜌0l0k (recall the definition of both types of sources following
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Equation (3)). Chain ends give the entropic free-energy density
(Equation (29) of Supporting Information [16]), in the present di-
mensionless units,

Δf (g) = 1
2

3
𝜌±0

g2 = 1
2

3Ns

2𝜌0
g2 (21)

where 𝜌±0 = 2Nc∕V = 2𝜌0∕Ns is the number density of chain
ends.[41] Kinks between chain segments give the free-energy den-
sity (Equation (32) of Supporting Information [16]), in the present
dimensionless units,

Δf (k) = 1
2

3𝜖T

2𝜌0
(𝜌0l0k)2 (22)

coming from the bending energy of the kinks with dimension-
less bending stiffness 𝜖T ≡ 𝜖∕(kBT) and bending stiffness 𝜖. Note
that 𝜖T is exactly the dimensionless persistence length 𝜉p of the
chain,[[42], p. 399] i.e., the persistence length in units of the seg-
ment length l0.

We see that both quadratic free energies, Equations (21) and
(22) are indeed proportional to 1/𝜌0. However, they are two dis-
tinct and practically independent contributions, not a single con-
tribution like the simplistic quadratic penalty potential assumed
in the model Equation (5). To get around the inconvenience, we
introduce a joint free-energy cost Δf (h) ≡ 1

2
Gh2 of the combined

source h = g + 𝜌0l0k, i.e., a convenient approximation that allows
us to live with the single penalty potential of Equation (5). It is
obtained by averaging the sum of Equations (21)–(22) over all
possible realizations of h with respect to g and k (see Support-
ing Information of ref. [16] for concept and derivation). The re-
sulting dimensionless strength of the penalty potential is, quite
elegantly,[16]

G = 3
2

1
𝜌0

(
1

Ns
+ 1

𝜖T

)−1

(23)

For increasing ratio Ns∕𝜖T it shows a crossover from chain-end-
to chain-curvature-dominated strength, which is at Ns = 𝜖T , i.e.,
when the persistence length equals the length of the chain. For
chains much shorter than the persistence length, we have G ≈
(3∕2)Ns∕𝜌0, which also follows directly from Equation (21). This
is the regime of stiff chains, where the strength of the density–
nematic coupling increases proportionally with the number of
segments Ns of the chains. Conversely, for chains much longer
than the persistence length, G ≈ (3∕2)𝜖T∕𝜌0, which in turn can
be directly deduced from Equation (22). This is the regime of
flexible chains, where the coupling strength is controlled by the
ratio of bending stiffness and thermal energy. Comparison with
G ≈ (3∕2)Ns∕𝜌0 of the stiff regime shows that the persistence
length 𝜖T ≡ Neff

s is simply the new effective chain length Neff
s ,

defining the coupling strength in the flexible regime.
To recap, the theoretical coupling strength Equation (23) re-

sults from the simplest free-energy models of independent
sources of the tensorial conservation law Equation (3), which are
additionally approximated as a single source. Does it bear any
resemblance to what we measured? The G̃∕𝜌0 plot in Figure 4 in-
deed shows the cross-over behavior with respect to chain length
Ns. It also shows saturation for large Ns, which is to be expected
according to Equation (23), since in our case the bending stiffness

Figure 6. Top: fit of the model Equation (23) with fit parameter 𝜖T to the
1000 and 5000 bp points of the G̃∕𝜌0 data from Figure 4; 𝜌0 = 𝜌00. Bot-
tom: the same data plotted against the expression in Equation (23) (the
theoretical curve above is now a straight line). For each data point, the
value of the ratio 𝜖T∕Ns is given.

𝜖 of DNA is a fixed parameter and thus its persistence length 𝜖T
at fixed temperature is also fixed. Thus, we can already confirm
at least this qualitative agreement.

Next, we try to fit the measured G̃∕𝜌0 data from Figure 4 with
the model Equation (23), i.e., explicitly with

G̃∕𝜌0 =
2
3

(
1

Ns
+ 1

𝜖T

)−1

(24)

and the only fit parameter 𝜖T . A fit of the 𝜌0 = 𝜌00 data taking into
account only points Ns = 1000 and Ns = 5000, shown in Figure 6
(top), yields 𝜖T ≈ 109, which is a good estimate of the persistence
length (i.e., 109 base pairs). Fits with the last four, three, two, and
one of the points Ns = {160, 333, 1000, 5000} all give similar val-
ues in the range 𝜖T ≈ 102 to 𝜖T ≈ 111. Systematic deviations from
the theoretical model are observed for shorter chains. In Figure 6
(bottom), the plot of the same data as a function of the expression
Equation (24) with 𝜖T = 109 shows more clearly these discrepan-
cies from the theoretical model Equation (24) (now the straight
line). In general, the same value on the horizontal axis can be

Macromol. Rapid Commun. 2024, 2400382 2400382 (8 of 12) © 2024 The Author(s). Macromolecular Rapid Communications published by Wiley-VCH GmbH
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Figure 7. A plot of the dimensionless coupling strength G from ref. [16]
analogous to Figure 6 (bottom), for a MC-simulated generic isotropic melt
of discrete worm-like chains within a mesoscopic “soft” model[13,33] (solid
circles with error bars). The values of the 𝜖T∕Ns ratio are again given for
all solid circles and can be directly compared with those in Figure 6 (bot-
tom). Empty circles denote abscissae without the 𝜌±0 term, i.e., with ne-
glected theoretical contributions from the chain ends (three rightmost
Ns = 4 empty circles lie outside the plot and are not shown). In contrast
to Figure 6 only the shortest chains come out of the flexible regime. The
permission to reproduce and edit the figure was granted by the author.

realized by different combinations of Ns and 𝜖T . In this partic-
ular case, 𝜖T is fixed and only Ns changes – the corresponding
ratios 𝜖T∕Ns are given with the data points.

A worthwhile comparison can be made with an analogous plot
in Figure 7, which has been obtained in ref. [16] by MC simula-
tions of a generic isotropic melt of discrete worm-like chains de-
scribed by a mesoscopic “soft” model.[13,33] This is a very different
system, but the density–nematic coupling is universal for linear
polymers, as is the form of the model Equation (5). In that case,
there is data available for four chain lengths Ns = 4, 32, 64, 128
and bending stiffnesses from 𝜖T = 0 to 𝜖T = 5.0 for Ns = 128 and
up to 𝜖T = 13 for Ns = 4, while only 𝜖T = 0 and 3.3 for Ns = 32
and 64. In Figure 7, the corresponding ratios 𝜖T∕Ns are again
given with the data points. This is a valuable complement to our
current data in Figure 6, since the different values on the hori-
zontal axis of Figure 7 are realized predominantly by variations
of 𝜖T rater than Ns. Except for the very short Ns = 4 chains, where
the theoretical model breaks down due to the small number of
intra-chain conformational degrees of freedom, the ratios 𝜖T∕Ns
are small and correspond to the regime of flexible chains. That
is, G̃ is controlled predominantly by 𝜖T and is only weakly af-
fected by Ns, which is also directly confirmed in Figure 7 by the
three closely points for equal 𝜖T and Ns = 32, 64, 128 with ratios
0.10, 0.051, 0.026, respectively. In Figure 6 (bottom), on the other
hand, we gradually cross over to the regime of stiff chains char-
acterized by large 𝜖T∕Ns ratios. Here, the crossover length (i.e.,
persistence length, 𝜖T ) is much larger than the few segments in
the cases of Figure 7, yet the expression Equation (24) already de-
viates significantly from the measured data (although less severe
than the stiffer Ns = 4 chains in Figure 7).

The new data in Figure 6 (bottom) thus indicate that the the-
oretical model Equations (21)–(24) for the density–nematic cou-

pling strength G is inaccurate not only for very short chains with
few conformational degress of freedom (segments), but generally
also for stiff (𝜖T∕Ns ≪ 1) and semi-flexible (𝜖T∕Ns ≈ 1) chains,
regardless of the number of their segments. Nevertheless, this
model is useful also in these regimes and incorporates the influ-
ence of the chain ends quite well – without it, the curve in Figure 6
(top) would be just a constant, and the data points in Figure 6 (bot-
tom) would all be on the same(!) abscissa (=109). Taking the chain
ends into account clearly corrects the prediction of G qualitatively
in the right direction, and moreover the quantitative inaccuracy
for semi-flexible chains is still below 50%.

5. Conclusion

We have set up a multiscale macroscopic model of an isotropic
solution of double-stranded DNA in B-form that comprises the
macroscopic polymer concentration field and nematic orienta-
tional order field as variables. By conducting microscopic MC
simulations employing oxDNA model we determined the pa-
rameters of the macroscopic model for various DNA chain
lengths from 16 to 5000 base pairs and concentrations from
0.050 mg ml−1 to 10 mg ml−1, which is marginally high for the
isotropic phase, at a temperature 25°C and an ionic strength
[Na+] of 1M. A detailed systematic characterization of this mul-
tiscale DNA model, including coverage of temperature and ionic
strength ranges, will be carried out in a subsequent study in
which macroscopic aspects of the double strand decomposition
are of prime interest. Allowing such a decomposition and simi-
lar decompositions in other multi-stranded linear polymers, e.g.,
collagen, requires a generalization of the model for the density–
nematic coupling strength.

We found that, to a first approximation, the parameters of the
model are simply proportional to the concentration for all con-
centrations studied, except of the two highest ones. In particu-
lar, this means that the coupling between concentration and ne-
matic orientational order, which was our main concern, is already
equally effective in the dilute limit and thus inherent to all so-
lutions of DNA (and linear polymer liquids in general), regard-
less of the concentration. As expected, the coupling strength in-
creases with chain length and saturates for long chains at a value
determined by the persistence length.

The results show that for sufficiently long DNA chains, i.e.,
with a length of at least the persistence length or longer, the
density(concentration)–nematic coupling strength G̃ is signifi-
cantly larger than the elastic constant L. Consequently, the in-
duced nematic orientational order is of the same order of magni-
tude as the relative concentration variation.

To the best of our knowledge, birefringence induced by poly-
mer concentration gradients has not yet been experimentally re-
ported. Nevertheless, due to its fundamental geometrical origin,
it should be a very persistent, robust phenomenon, but its large
effects may be limited to short length scales supporting large con-
centration gradients. A large second derivative (curvature) of the
concentration field, which is the driving cause of nematic order-
ing, is typically found in the vicinity of small inclusions of another
phase, such as bubbles or droplets. The present work should also
serve as motivation for the experimental observation, character-
ization, and quantification of this interesting phenomenon of
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Figure 8. Simulation snapshot examples of systems with 16, 160, and 1000 base pairs per chain and base pair densities 𝜌00 (top) and 20𝜌00 (bottom).

birefringence due to nematic order induced by spatial variations
in polymer concentration.

In addition to the macroscopic aspects of temperature-
controlled DNA double strand decomposition and other detailed
aspects of isotropic double-stranded DNA solution, our future
perspective includes the formulation of its nematic phase ana-
logue, as well as the creation of a variety of multiscale models of
other isotropic/nematic linear polymer solutions or melts.

6. Methods Section

Simulations were performed at 25°C (298.16K) and an ionic
strength [Na+] of 1M. The salt concentration above the typical
physiological concentration range 0.01 – 0.1M allowed us to effi-
ciently simulate extensive systems with up to 1.0 × 105 base pairs
due to a shorter Debye screening length cut-off.

Double-stranded DNA polymers in B-form were constructed
using the oxDNA[22] generation setup, Figure 2, where each nu-
cleotide base pair is represented as a coarse-grained particle inter-
acting with its environment through backbone connectivity, ex-
cluded volume, cross-chain hydrogen bonding and base stacking
potentials.[43] The B-form, as the by far most common confor-
mation of the DNA macromolecule in aqueous solutions, is ex-
cellently represented by the oxDNA coarse-grained implicit sol-
vent model, which enables the exploration of polymer proper-
ties in systems comprising 100 000 base pairs or more. For the
present purpose, complementary polyguanine and polycytosine
chains were simply used, since it had been found that the ob-
served macroscopic properties of the model at the temperature
considered did not depend on the specific base pair sequence.
Thus, the segments were the guanine-cytosine base pairs with
segment length (our length unit) l0 = 0.34 nm.[44]

Generally, the oxDNA model has been shown[22] to offer a
good representation of structural and mechanical properties,
such as persistence length or response to either interal or exter-

nal stresses, for various nucleic acid polymers. Moreover, it is par-
ticularly well calibrated to reproduce DNA denaturation and hy-
bridization, i.e., dissociation and reassociation of double strand
into single strands and vice versa. A separate study is planned
to investigate sequence-dependent macroscopic consequences of
double strand dissociation, along with their dependence on tem-
perature and ionic strength.

A cubic simulation box with a fixed side of L0 = 1365 was
used (NVT conditions) and periodic boundary conditions were
applied. As it was essential for the DNA to be in the isotropic
phase, its concentration had to be kept below the level at which
cholesteric (chiral nematic) liquid crystalline phase (co-)exists. A
systematic array of systems was set up with five different seg-
ment (base pair) number densities, multiples 1, 2, 5, 10, and
20 of the base density 𝜌00 = 2.0 × 10−6 (corresponding to about
0.050 mg ml−1), and monodisperse polymer chains of Ns = 16,
40, 80, 160, 333, and 1000 base pairs at each density, as illustrated
in Figure 8. To keep the chain length strictly monodisperse, 𝜌00
was minimally adjusted as needed by rounding the total num-
ber of monomers to the nearest multiple (i.e., integer number
of chains Nc) of the chain length. This density interval is well be-
low the threshold concentration ≈ 10 mg ml−1 for the isotropic to
cholesteric phase transition of DNA at [Na+] = 0.1 M.[45] For still
higher densities, yet compatible with the isotropic phase, addi-
tional systems were set up with 𝜌0 = 100𝜌00, Ns = 16, 40, 80, 160
and 𝜌0 = 200𝜌00, Ns = 16, 40, 80 in a box with L0 = 1365∕ 3

√
100,

while checking that the degree of nematic order (the average
largest in magnitude eigenvalue of Qij) was below ≈ 0.01 and
the equilibrium phase remained essentially isotropic.

The simulations were performed using the virtual-move
Monte Carlo (VMMC) protocol[43,46] – a MC algorithm particu-
larly suited for computational models expressed only by pair-
wise interactions between particles (such as oxDNA). In such
an MC step, clusters of interacting particles are moved to-
gether while preserving their internal configuration. Under NVT

Macromol. Rapid Commun. 2024, 2400382 2400382 (10 of 12) © 2024 The Author(s). Macromolecular Rapid Communications published by Wiley-VCH GmbH
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Figure 9. Average projection of the end-to-end directions of the chains
(unit vectors ê) onto these directions in the initial configuration (unit vec-
tors ê0), decreasing with the number of VMMC steps. About 100 steps
are sufficient for orientational decorrelation of the shortest chains, while
longer chains decorrelate in fewer steps, because they are perturbed more
often during a step.

conditions, the VMMC algorithm performs translational and ro-
tational moves of the clusters. The clustering is also subjected to
MC evaluation, so strongly bonded particles are only more likely
clustered and moved together, while intra-chain MC moves re-
main present.

The initial configurations, which consisted of parallel DNA
chains, were let to equilibrate for at least 2000 VMMC steps, with
a large safety margin as confirmed by Figure 9. The VMMC tra-
jectories for fluctuation analysis were collected over at least 18
000 VMMC steps. In some cases, more steps were needed to ob-
tain adequate statistics of the density fluctuation – up to 360 000
steps for the shortest chains of 16 base pairs. Standard deviations
of the measured fluctuation amplitudes were estimated by block
averaging, using a block of size 100.

The fluctuations Equations (13)–(17) of Fourier components
of any pair of variables, denoted here as 𝛿a(q) =

∑
s ase

−iq⋅rs and
𝛿b(q) =

∑
s bse

−iq⋅rs , are extracted as follows

1
2N0

[⟨𝛿a(q)𝛿b(−q)⟩ + ⟨𝛿a(−q)𝛿b(q)⟩]
= 1

N0

⟨[∑
s

as cos(q ⋅ rs)

][∑
s

bs cos(q ⋅ rs)

]

+

[∑
s

as sin(q ⋅ rs)

][∑
s

bs sin(q ⋅ rs)

]⟩
(25)

where s = 1…N0 runs over the segments of all chains and rs

are their positions. For segment density fluctuations 𝛿𝜌, as =
1, and for the nematic fluctuations 𝜌0𝛿Qij, as = (3ts

i t
s
j − 𝛿ij)∕2,

where in B-form DNA the segment directions ts are best repre-
sented by normals to the nucleobase planes. Note that the low-
q components of the extracted discrete variables are by defini-
tion “coarse-grained” and hence the long-wavelength correlations
Equation (25) computed from the simulation data can be directly

compared to the predictions of the continuum theory Equations
(13)–(17).

Since the system is isotropic, all quantities depend only on the
magnitude |q| = q. This fact was utilized by averaging them over
spherical shells with thickness Δq ∼ 2𝜋∕L0, ensuring that even
the smallest shell (q → 0) with q = 0 excluded was populated. The
isotropic symmetry is broken only for non-scalar quantities – by
the direction of q defining the z axis, as already in Equations (8)–
(12). Thus, expressing their components in such coordinate sys-
tems that q = qêz for each q and, arbitrarily in the xy plane,

êx =
êx′ − (êx′ ⋅ êz)êz|êx′ − (êx′ ⋅ êz)êz| , êy = êz × êx (26)

where êx′ is aligned with the simulation box, the components are
independent of the direction of q and can be averaged. With that,
for the component 𝜌0𝛿Qzz, as is as = [3(ts ⋅ êz)2 − 1]∕2 and for the
components 𝜌0𝛿Q{x,y}z, as is as = 3(ts ⋅ ê{x,y})(t

s ⋅ êz)∕2.
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